...矩形ABCD中,AB=2,AD=3,E.F分别是AB.CD的中点,⑴在AD上取一点M_百...
发布网友
发布时间:2024-09-27 02:12
我来回答
共2个回答
热心网友
时间:2024-10-05 16:58
1)证明:设AG交MN于O,则
∵A、G关于BM对称,
∴AO=GO,AG⊥MN.
∵E、F分别是矩形ABCD中AB、CD的中点,
∴AE=BE,AE‖DF且AE=DF,
∴AD‖EF‖BC.
∴MO:ON=AO:OG=1:1.
∴MO=NO.
∴AG与MN互相平分且互相垂直.
∴四边形ANGM是菱形.
(2)连接AF,
∵AD‖EF‖BC,
∴∠PAF=∠AFE,∠EFB=∠FBC.
又EF⊥AB,AE=BE,
∴AF=BF,
∴∠AFE=∠EFB.
∴∠PAF=∠AFE=∠EFB=∠FBC.
∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC.
∴∠PFA=∠FBC=∠PAF.
∴PA=PF.
∴PA= 根号(DF的平方+PD的平方)=根号【1-(3-PA)的平方】.
∴PA=3分之5 .
热心网友
时间:2024-10-05 16:54
太简单了!!!!