河北传媒学院2011广编专接本的分数线
发布网友
发布时间:2022-05-06 23:48
我来回答
共3个回答
热心网友
时间:2023-10-08 20:29
二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
二次函数的通式是 y等于 a乘以x的平方 加 b乘以x 加 c 用数学等式写出来就是 y=ax²+bx+c
如果知道三个点 将三个点的坐标带入 也就是说三个方程解三个未知数
如题 方程一 8=aº^+bº+c 化简 8=c 也就是说c就是函数与Y轴的交点
方程二 7=a*6^2+b*6+c 化简 7=36a+6b+c
方程三 7=a*(-6)^2+b*(-6)+c化简 7=36a-6b+c
解出abc 就可以了
上边这种是老老实实的解法
对(6,7)(-6,7) 这两个坐标 可以求出一个对称轴 也就是X=0
通过对称轴公式x=-b/2a 也可以算
如果知道过x轴的两个坐标(y=0的两个坐标的值叫做这个方程的两个根)也可以用对称轴公式x=-b/2a算
或者使用韦达定理 一元二次方程ax+bx+c=0 (a≠0 且△=b-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1·X2=c/a
一般式
y=ax+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b²/4a) ;
顶点式
y=a(x-h)²;+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax²;的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即b2-4ac≥0] ;
由一般式变为交点式的步骤:
∵X1+x2=-b/a x1·x2=c/a
∴y=ax²;+bx+c=ax²;+b/ax+c/a=a[﹙x²;-(x1+x2)x+x1x2]=a(x-x1)(x-x2)
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1·x2) (y1为截距) 求根公式二次函数表达式的右边通常为二次三项式。
求根公式
x是自变量,y是x的二次函数
x1,x2=[-b±(√(b²;-4ac)]/2a
(即一元二次方程求根公式)(如右图)
求根的方法还有因式分解法和配方法
二次函数与X轴交点的情况
当△=b²;-4ac>0时, 函数图像与x轴有两个交点。
当△=b²;-4ac=0时,函数图像与x轴有一个交点。
当△=b²;-4ac<0时,函数图像与x轴没有交点。
编辑本段
如何学习二次函数
1。要理解函数的意义。
2。要记住函数的几个表达形式,注意区分。
3。一般式,顶点式,交点式,等,区分对称轴,顶点,图像等的差异性。
4。联系实际对函数图像的理解。
5。计算时,看图像时切记取值范围。
编辑本段
二次函数的图像
在平面直角坐标系中作出二次函数y=ax²+bx+c的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。
注意:草图要有 1本身图像,旁边注明函数。
2画出对称轴,并注明直线X=什么 (X= -b/2a)
3与X轴交点坐标 (x1,y1);(x2, y2),与Y轴交点坐标 (0,c),顶点坐标(-b/2a, (4ac-bx²)/4a).抛物线的性质
轴对称
1.二次函数图像是轴对称图形。对称轴为直线x = h 或者x=-b/2a
对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当h=0时,二次函数图像的对称轴是y轴(即直线x=0)
a,b同号,对称轴在y轴左侧
b=0,对称轴是y轴
a,b异号,对称轴在y轴右侧
顶点
2.二次函数图像有一个顶点P,坐标为P ( h,k )
当h=0时,P在y轴上;当k=0时,P在x轴上。
h=-b/2a k=(4ac-b2)/4a
开口
3.二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。
决定对称轴位置的因素
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为同左异右,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时
(即ab< 0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的
斜率k的值。可通过对二次函数求导得到。
决定二次函数图像与y轴交点的因素
5.常数项c决定二次函数图像与y轴交点。
二次函数图像与y轴交于(0,C)
注意:顶点坐标为(h,k) 与y轴交于(0,C)
二次函数图像与x轴交点个数
6.二次函数图像与x轴交点个数
a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
k=0时,二次函数图像与x轴有1个交点。
a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点
_______
当a>0时,函数在x=h处取得最小值ymix=k,在x<h范围内是减函数,在
x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向
上,函数的值域是y>k
当a<0时,函数在x=h处取得最大值ymax=k,在x>h范围内事增函数,在
x<h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下
,函数的值域是y<k
当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数
特殊值的形式
7.特殊值的形式
①当x=1时 y=a+ah2+2ah+k
②当x=-1时 y=a+ah2-2ah+k
③当x=2时 y=4a+ah2+8ah+k
④当x=-2时 y=4a+ah2-8ah+k
二次函数的性质
8.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
正无穷);②[t,正无穷)
奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数 。
周期性:无
解析式:
①y=ax²+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b²;)/4a);
⑷Δ=b2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b²)/4a;
③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。
两图像对称
①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称;
②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称;
③y=ax2+bx+c与y=-a(x-h﹚2+k关于顶点对称;
④y=ax2+bx+c与y=-a(x+h﹚2-k关于原点对称。
编辑本段
二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax²+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax²+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax²;;;,y=a(x-h)²;;;,y=a(x-h)²;;+k,y=ax²;;+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式 顶点坐标 对 称 轴
y=ax² (0,0) x=0
y=ax²;+K (0,K) x=0
y=a(x-h)²; (h,0) x=h
y=a(x-h)²;+k (h,k) x=h
y=ax²;+bx+c (-b/2a,4ac-b²;/4a) x=-b/2a
当h>0时,y=a(x-h)²;;的图象可由抛物线y=ax²;;向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到。
当h>0,k>0时,将抛物线y=ax²;;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;
当h>0,k<0时,将抛物线y=ax²;;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²;-k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)²;+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x+h²;-k的图象;在向上或向下。向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。
因此,研究抛物线 y=ax²;+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)²;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。这给画图象提供了方便。
2.抛物线y=ax²;+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b²;;]/4a)。
3.抛物线y=ax²;+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大。若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小。
4.抛物线y=ax²;+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b&²;-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax²+bx+c=0(a≠0)的两根.这两点间的距离AB=|x?-x?| =√△/∣a∣(a绝对值分之根号下△)另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。
5.抛物线y=ax²;+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a。
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax²;+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)²;+k(a≠0)。
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0)。
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。中考典例
1.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点:
甲:对称轴是直线x=4;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.
请你写出满足上述全部特点的一个二次函数解析式: .
考点:二次函数y=ax²;+bx+c的求法
评析:设所求解析式为y=a(x-x1)(x-x2),且设x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2). 『因为交点式a(x-x1)(x-x2),又因为与y轴交点的横坐标为0,所以a(0+x1)(0+x2),也就是ax1x2
∵抛物线对称轴是直线x=4,
∴x2-4=4 - x1即:x1+ x2=8 ① ∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 6,
即:x2- x1= ②
①②两式相加减,可得:x2=4+,x1=4-
∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。
当ax1x2=±1时,x2=7,x1=1,a=± 1
当ax1x2=±3时,x2=5,x1=3,a=± 1
因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3)
即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3
说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为A(5,0),B(3,0)。再由题设条件求出a,看C是否整数。若是,则猜测得以验证,填上即可。
解析法二: 猜测法
假设以原点标记为O(0,0)点,抛物线与Y轴交点为C(0,c),A(x1,0), B(x2,0),则S△ABC=3,即是1/2·OC·AB=3,OC·AB=6=c·(x2-x1)(即是三角形的底乘以高等于6,而底是AB的距离,高为OC的距离,由条件乙、条件丙可知,三角形的底和高均为整数,即使A、B两点到对称轴的距离均相等且为整数,6=2*3=6*1,可知只可能有两种情况(1)AB间距离为2且高OC 为3,(2)AB间距离为6,高OC为1,便可简单解析出,当然后面需添加验证步骤。
2.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30)。y值越大,表示接受能力越强。
(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?
(2)第10分时,学生的接受能力是什么?
(3)第几分时,学生的接受能力最强?
考点:二次函数y=ax²+bx+c的性质。
评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)²;+59.9,根据抛物线的性质可知开口向下,当x<13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0<x<30,所以两个范围应为0<x<13;13<x<30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下:
解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)²;+59.9
所以,当0<x<13时,学生的接受能力逐步增强。
当13<x<30时,学生的接受能力逐步下降。
(2)当x=10时,y=-0.1(10-13)2+59.9=59。
第10分时,学生的接受能力为59。
(3)x=13时,y取得最大值,
所以,在第13分时,学生的接受能力最强。
3.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为
:(55–40)×450=6750(元).
(2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:
y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x^2+1400x–40000(元),
∴y与x的函数解析式为:y =–10x^2+1400x–40000.
(3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,
即:x2–140x+4800=0,
解得:x1=60,x2=80.
当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:
40×400=16000(元);
当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:
40×200=8000(元);
由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元.
5.2006义乌市经济继续保持平稳较快的增长态势,全市实现生产总值Y元,已知全市生产总值=全市户籍人口×全市人均生产产值,设义乌市2006年户籍人口为x(人),人均生产产值为y(元).
(1)求y关于x的函数关系式;
(2)2006年义乌市户籍人口为706 684人,求2006年义乌市人均生产产值(单位:元,结果精确到个位):若按2006年全年美元对人民币的平均汇率计(1美元=7.96元人民币),义乌市2006年人均生产产值是否已跨越6000美元大关?
6.(北京西城区)抛物线y=x2-2x+1的对称轴是( ) (A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2 考点:二次函数y=ax2+bx+c的对称轴. 评析:因为抛物线y=ax2+bx+c的对称轴方程是:x=-b/2a,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确. 另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴x=1,应选A.
7..某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,图中的二次函数图像(部分)刻画了了该公司年初以来累计利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).
根据图像提供的信息,解答下列问题:
(1)由已知图像上的三点坐标,求累计利润s(万元)与销售时间t(月)之间的函数表达式;
(2)求截止到几月末公司累计利润可达30万元;
(3)求第8个月公司所获利润是多少万元。
图像我整不来,我只能把图标说一下:横坐标是(t/月),纵坐标是(s/万元),然后图上画了3个坐标点,(1,-1.5)(2,-2)(5,2.5)。
(^2代表平方,*代表乘号)
解:(1)设函数关系试为S=at²+bt+c
因为S=at²+bt+c经过(1,-1.5)(2,-2)(5,2.5)
所以-1.5=a+b+c
-2=4a+2b+c
2.5=25a+5b+c
解得a=1/2
b=-2
c=-0
所以函数关系试为S=1/2t²-2t
(2)将S=30代入关系试得30 =1/2t²-2t 解得t1=10 t2=-6(舍去)
(3)将t=8代入关系式得S=1/2*64-2*8=16
解析式求法
①一般式:根据y=ax^2;+bx+c将(a,b)(c,d)(m,n)同时带入y=ax2+bx+c 可得解析式
②顶点式:y=a(x-h)+k , h为顶点横坐标 k为顶点的纵坐标 将顶点和一个任意坐标带入顶点式后化简 可得解析式
③交点式:y=a(x-x1)(x-x2) -x1 -x2为与x轴的交点横坐标 将x1 x2带入交点式 再带入任意一个坐标 可得交点式 化简后可得解析式
热心网友
时间:2023-10-08 20:30
公共课62 具体录取要等二十五号
热心网友
时间:2023-10-08 20:30
英语62,现在登网址,输入你的姓名密码,就可以查了