发布网友 发布时间:2024-10-01 03:36
共1个回答
热心网友 时间:2024-10-09 21:40
令x=tanθ,-π/2<θ<π/2
即dx=secθ^2*dθ
则∫(1/√1+x^2)dx
=∫(1/√(1+tanθ^2)*secθ^2*dθ
=∫(1/cosθ)dθ
=∫[cosθ/(cosθ)^2]dθ
=∫1/[1-(sinθ)^2]d(sinθ)
=1/2*ln[(1-sinθ)/(1+sinθ)]+C
=ln[x+√(1+x^2)]+c(c为常数)
求1/根号(1+x^2) 的原函数就是求函数1/根号(1+x^2) 对x的积分。
求1/根号(1+x^2) 的原函数,用”三角替换”消掉根号(1+x^2)。
扩展资料:原函数的定义
已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有
若F'(x)=f(x),dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
例:sinx是cosx的原函数