...知识点总结(三角形和三角形的证明 的知识要细致一些)
发布网友
发布时间:1天前
我来回答
共1个回答
热心网友
时间:1天前
第一部分: 点 、线 、角
一 、 线
1、直线 2、射线 3、线段
二、角
1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。
另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
2.角的平分线
3、角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4. 角的分类:(1)锐角 (2)直角 (3)钝角 (4)平角 (5)周角
5. 相关的角:
(1)对顶角 (2)互为补角 (3)互为余角
6、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
7、角的性质
(1)对顶角相等 (2)同角或等角的余角相等 (3)同角或等角的补角相等。
三、相交线
1、斜线 2、两条直线互相垂直 3、垂线,垂足
4、垂线的性质
(l)过一点有且只有一条直线与己知直线垂直。
(2)垂线段最短。
四、距离
1、两点的距
2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。
五、平行线
1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.
5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_________________.
第二部分:三角形
知识点:
一、关于三角形的一些概念
1、三角形的角平分线。
三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离)
三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心)
2、三角形的中线
三角形的中线也是一条线段(顶点到对边中点间的距离)
三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心)
3.三角形的高
三角形的高线也是一条线段(顶点到对边的距离)
注意:三角形的中线和角平分线都在三角形内。
如图 2-l, AD、 BE、 CF都是么ABC的角平分线,它们都在△ABC内
如图2-2,AD、BE、CF都是△ABC的中线,它们都在△ABC内
而图2-3,说明高线不一定在 △ABC内,
图2—3—(1) 图2—3—(2) 图2-3一(3)
图2-3—(1),中三条高线都在△ ABC内,
图2-3-(2),中高线CD在△ABC内,而高线AC与BC是三角形的边;
图2-3一(3),中高线BE在△ABC内,而高线AD、CF在△ABC外。
二、三角形三条边的关系
三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。
等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。
三角形分类
按接边相等关系来分类:
用集合表示,见图2-4
推论三角形两边的差小于第三边。
不符合定理的三条线段,不能组成三角形的三边。
例如三条线段长分别为5,6,1人因为5+6<12,所以这三条线段,不能作为三角形的三边。
三、三角形的内角和
定理三角形三个内角的和等于180°
由定理可以知道,三角形的三个内角中,只可能有一个内角是直角或钝角。
推论1:直角三角形的两个锐角互余。
三角形按角分类:
用集合表示,见图
三角形一边与另一边的延长线组成的角,叫三角形的外角。
推论2:三角形的一个外角等于和它不相邻的两个内角的和。
推论3:三角形的一个外角大于任何一个和它不相邻的内角。
例如图2—6中
∠1 >∠3;∠1=∠3+∠4;∠5>∠3+∠8;∠5=∠3+∠7+∠8;
∠2>∠8;∠2=∠7+∠8;∠4>∠9;∠4=∠9+∠10等等。
四、全等三角形
能够完全重合的两个图形叫全等形。
两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。
全等三角形的对应边相等;全等三角形的对应角相等。
五、全等三角形的判定
1、边角边公理:“SAS”
注意:一定要是两边夹角,而不能是边边角。
2、角边角公理:ASA 3、AAS 4、SSS
3、直角三角形全等的判定:斜边,直角边”或HL
三角形的重要性质:三角形的稳定性。
六、角的平分线
定理1、在角的平分线上的点到这个角的两边的距离相等。
定理2、一个角的两边的距离相等的点,在这个角的平分线上。
可以证明三角形内存在一个点,它到三角形的三边的距离相等这个点就是三角形的三条角平分线的交点(交于一点)
七、等腰三角形的判定
定理:如果一个三角形有两个角相,那这两个角所对的两条边也相等。(简写成“等角对等动”)。
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角等于60°的等腰三角形是等边三角形
推论3:在直角三角形中,如果一个锐角等于3O°,那么它所对的直角边等于斜边的一半。
八、勾股定理
勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方:
勾股定理的逆定理:如果三角形的三边长a、b、c有下面关系:
那么这个三角形是直角三角形
初一下学期 知识点总结(三角形和三角形的证明 的知识要细致一些)
1、三角形的角平分线。三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离)三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心)2、三角形的中线 三角形的中线也是一条线段(顶点到对边中点间的距离)三条中线线交于一点(交点在三角形内部,是三角形的几何中心,...
初二数学知识点归纳
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做...
初二数学部编版知识点总结
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。4、中线:在三角形中,连接一个顶点和它对边中点的线段...
初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析...
1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三...
八年级数学知识点总结
八年级数学知识点总结一 等腰三角形判定 中线 1、等腰三角形底边上的中线垂直底边,平分顶角; 2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。 1、两边上中线相等的三角形是等腰三角形; 2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形 角平分线 1...
全等三角形的重点
知识点总结:一、全等图形、全等三角形:1.全等图形:能够完全重合的两个图形就是全等图形。2.全等图形的性质:全等多边形的对应边、对应角分别相等。3.全等三角形: 三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等...
人教版初三数学知识点归纳
初三数学知识点归纳大全 第四章直线形 ★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。 ☆内容提要☆ 一、直线、相交线、平行线 1.线段、射线、直线三者的区别与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。 2.线段的中点及表示 3.直线、线段的基...
如图1,已知△ABC是等边三角形,点D是边BC的中点,∠ADE=60°,且DE与∠A...
所以三角形AMD和三角形DCE全等(ASA)所以AD=DE 所以三角形ADE是等腰三角形 所以三角形ADE是等边三角形 (2)三角形ADE是等边三角形结论成立 证明:因为CE是等边三角形ABC的外角平分线 所以角ACE=角DCE=1/2角ACD 角ACB=60度 因为角ACB+角ACD=180度 所以角ACD=120度 所以角ACE=角DCE=60度 因为...
求在三角形(包括等腰,等边三角形)、三角形相似证明、圆,有哪些性质!好...
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ...
初中数学试卷分析
在填空题里,涉及到的就是一些基本的概念,如单项式和多项式的区别;同底数幂的乘法;用科学记数法表示一个数;梯形的面积与底边之间的函数关系式;三人做游戏的概率;根据平行线的特征判定角的大小;三角形的中线;角平分线等。填空题的命题能从最基本的知识点入手,从知识点的细小处着手,从最基本的知识点考细小的知识...