...函数,且满足f(x+2)=-f(x),当x属于[0,1]时,f(x)=2^x-1
发布网友
发布时间:2024-09-30 18:31
我来回答
共2个回答
热心网友
时间:2024-10-07 09:23
log(1/4)64<log(1/4)36< log(1/4)16,
所以-3<log(1/4)36<-2,
2<-log(1/4)36<3,
则0<-log(1/4)36 -2<1。
f(log(1/4)36) = - f( -log(1/4)36 ) ---------( R内奇函数 )
= f(-log(1/4)36 - 2 ) --------( f(x+2)=-f(x) )
= 2^( -log(1/4)36 - 2 )-1 -----( f(x)=2^x-1 )
= 2^[( -log(1/4)36]/2^2-1
=2^[( log(1/2)1/6]/4-1
=2^[( log(2)6]/4-1
=6/4-1=1/2.
热心网友
时间:2024-10-07 09:27
f(x+4)=-f(x+2)=f(x),所以f(x)是以4为周期的函数,
log(1/4)36=-log(4)36=-log(2)6
因为f(x)为奇函数,所以f-log(2)6=f( log(2)6)=f(1+log(2)3 )
因为f(x)为奇函数,足f(x+2)=-f(x)=f(-x),即f(x)关于x=1对称
所以f(1+log(2)3 )=f(1-log(2)3 )=f(log(2)3 -1)=
3÷2-1=0.5
热心网友
时间:2024-10-07 09:21
log(1/4)64<log(1/4)36< log(1/4)16,
所以-3<log(1/4)36<-2,
2<-log(1/4)36<3,
则0<-log(1/4)36 -2<1。
f(log(1/4)36) = - f( -log(1/4)36 ) ---------( R内奇函数 )
= f(-log(1/4)36 - 2 ) --------( f(x+2)=-f(x) )
= 2^( -log(1/4)36 - 2 )-1 -----( f(x)=2^x-1 )
= 2^[( -log(1/4)36]/2^2-1
=2^[( log(1/2)1/6]/4-1
=2^[( log(2)6]/4-1
=6/4-1=1/2.
热心网友
时间:2024-10-07 09:19
f(x+4)=-f(x+2)=f(x),所以f(x)是以4为周期的函数,
log(1/4)36=-log(4)36=-log(2)6
因为f(x)为奇函数,所以f-log(2)6=f( log(2)6)=f(1+log(2)3 )
因为f(x)为奇函数,足f(x+2)=-f(x)=f(-x),即f(x)关于x=1对称
所以f(1+log(2)3 )=f(1-log(2)3 )=f(log(2)3 -1)=
3÷2-1=0.5