发布网友 发布时间:1天前
共0个回答
解:1/n(n+1)
求数列1/1x2,1/2x3,1/3x4,1/4x5...的前n项和---由于1/1x2=1-1/2 1/2x3=(1/2)-(1/3)1/3x4=(1/3)-(1/4)……1/n(n+1)=(1/n)-(1/n+1)所以前n项的和为1-(1/n+1)
求数列1/1x2,1/2x3,1/3x4,1/4x5...的前n项和---由于1/1x2=1-1/2 1/2x3=(1/2)-(1/3)1/3x4=(1/3)-(1/4)……1/n(n+1)=(1/n)-(1/n+1)所以前n项的和为1-(1/n+1)
1/1x2 1/2x3 1/3x4 1/4x5 1/5x6 简便运算?=1/1+(-1/2+1/2)+(-1/3+1/3)+(-1/4+1/4)+(-1/5+1/5)-1/6 =1-1/6 =5/6
写出数列1/1x2,1/2x3,1/3x4…的通项公式.呵呵,这简单1/n×(n+1)
...1/1x2+1/2x3+1/3x4= 1/1x2+1/2x3+1/3x4+1/4x5= 要规律1/4x5=1/4-1/5;……所以:1/1x2+1/2x3=1/1-1/2+1/2-1/3=1-1/3=2/3;1/1x2+1/2x3+1/3x4=1/1-1/2+1/2-1/3+1/3-1/4=1-1/4=3/4;1/1x2+1/2x3+1/3x4+1/4x5=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5=1-1/5=4/5;……...
1/1x2+1/2x3+1/3x4+1/4x5 不用通分 你能计算吗?原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)=1-1/5 =4/5
计算1/1x2×3十1/2x3Ⅹ4十1/3x4x5…为什么要提取1/2因为 1/1×2×3=1/6 而 1/1×2-1/2×3=1/2-1/6=1/3 所以 1/1×2×3=1/2×(1/1×2-1/2×3)同理 1/2×3×4=1/24 1/2×3-1/3×4=1/6-1/12=1/12 所以 1/2×3×4=1/2×(1/2×3-1/3×4)所以要提取1/2 ...
求1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+...+1/(2005x2006)除了最左边和最右边的一项其余通通可以抵消即原式等于1减2006分之1等于2OO6分之2005 我是数学老师不懂再来问我好了.
1/1x2+1/2x3+1/3x4+1/4x5...1/9x10简算由裂项公式:1/[n(n+1)]=1/n-1/(n+1)知:原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)……+(1/9-1/10)=1-1/2+1/2-1/3+1/3-1/4……+1/9-1/10 =1-1/10 =9/10