发布网友 发布时间:1天前
共0个回答
第n项为1/n(n+1)由于1/1x2=1-1/2 1/2x3=(1/2)-(1/3)1/3x4=(1/3)-(1/4)……1/n(n+1)=(1/n)-(1/n+1)所以前n项的和为1-(1/n+1)
求数列1/1x2,1/2x3,1/3x4,1/4x5...的前n项和---第n项为1/n(n+1)由于1/1x2=1-1/2 1/2x3=(1/2)-(1/3)1/3x4=(1/3)-(1/4)……1/n(n+1)=(1/n)-(1/n+1)所以前n项的和为1-(1/n+1)
1x2x3+2x3x4+...+48x49x50帮个忙解下1*2*3=(1*2*3*4-0*1*2*3)/(4-0),括号里1*2*3是公因数,提出后剩下(4-0),把它除掉就是1*2*3了 2*3*4=(2*3*4*5-1*2*3*4)/(5-1), 同理 ...n*(n+1)(n+2)=[n*(n+1)(n+2)(n+3)-(n-1)n*(n+1)(n+2)]/[(n+3)-(n-1)]分母都是4 相加,...
计算,1/2x4+1/4x6+1/6x8+...+1/48x50=?,1/2+1/6+1/12+1/20+1/30+1/...1/2x4+1/4x6+1/6x8+...+1/48x50 =1/2×(1/2-1/4+1/4-1/6+1/6-1/8+……+1/48-1/50)=1/2×(1/2-1/50)=1/2×12/25 =6/25,1/2+1/6+1/12+1/20+1/30+1/42 =1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7 =1-1/7 =6/7 ...
1/1x2,1/2x3 ,1/3x4,1/4x5 通项公式解:1/n(n+1)
写出数列1/1x2,1/2x3,1/3x4…的通项公式.呵呵,这简单1/n×(n+1)
请教一道小学数学题,1/1x2+1/2x3+1/3x4+1/4x5+...1/2005x2006怎么算...解:根据两个连续自然数A,B.1/A-1/B=1/AB得 原式 =1-1/2+(1/2-1/3)+(1/4-1/3)+(1/5-1/4)+...+(1/2006-1/2005)=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5+...+1/2005-1/2006)=1-1/2006 =2005/2006....
已知1/1x2=1-1/2;1/2x3=1/2-1/3,1/3x4=1/3-1/4,1/4x5=1/4-1/5;…1...+ 1/(2*3) + 1/(3*4) + 1/(4*5) + ... + 1/(n-1)n )= x (1/2 + 1/2-1/3 + 1/3-1/4 + 1/4-1/5 + ...+ 1/(n-1) - 1/n)= x (1/2 +1/2 -1/n)= x(n-1)/n 所以原不等式即 x(n-1)/n > n-1 因为 n-1 > 0,所以 x > n ...
1/1x2+1/2x3+1/3x4+…+1/2010x2011 讲解一下! 知道答案但看不明白啊...1/(1×2)=1-1/2 1/(2×3)=1/2-1/3 1/1x2+1/2x3+1/3x4+…+1/2010x2011 =1-1/2+1/2-1/3+1/3-1/4+...+1/2010-1/2011 =1+(1/2-1/2)+(1/3-1/3)+...+(1/2010-1/2010)-1/2011 =1-1/2011 =2010/2011 裂项求和 ...
求1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+...+1/(2005x2006)除了最左边和最右边的一项其余通通可以抵消即原式等于1减2006分之1等于2OO6分之2005 我是数学老师不懂再来问我好了.