已知正数x,y满足x+y=1则z=(x+1/x)(y+1/y)最小值为
发布网友
发布时间:2024-10-18 14:49
我来回答
共1个回答
热心网友
时间:2024-10-26 08:11
(x + 1/x) * (y + 1/y)
= [(x^2 + 1)/x] * [(y^2 + 1)/y]
= [x^2 + y^2 + (xy)^2 + 1]/xy
= [(x+y)^2 - 2xy + (xy)^2 + 1]/xy
将x+y=1代入:
= [(1 - 2xy + (xy)^2 + 1]/xy
= xy + 2/(xy) - 2
由于x+y ≥ 2√xy,则 0 < xy ≤1/4
对于对钩函数xy + 2/(xy),拐点是√2 >1/4
所以xy = 1/4时取最小值
即原式 = 1/4 + 8 -2 = 25/4