发布网友 发布时间:2024-10-21 21:51
共1个回答
热心网友 时间:2024-11-26 12:51
方差是实际值与期望值之差平方的期望值,而标准差是方差平方根。 在实际计算中,我们用以下公式计算方差。 方差是各个数据与平均数之差的平方的平均数,即 s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2] ,其中,x_表示样本的平均数,n表示样本的数量,^2表示平方,xn表示个体,而s^2就表示方差。 而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为总体X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(Xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。 见百度百科