...相对论时空是弯曲的,那为什么人们感觉不到时空的弯曲呢?
发布网友
发布时间:2024-10-19 11:30
我来回答
共4个回答
热心网友
时间:2024-11-04 03:20
1.广义相对论则完全变革了我们的宇宙观,它断言引力会使整个时空变形。如果在一个给定点上直接的引力效应已被消除,我们仍能测量相邻两点之间的微分效应。
2.
上帝以弯曲来显平直。 ——共济会思想象(1782)
“弯曲”是一个日常用词。三维空间里的欧几里德几何允许我们讲一维的曲线和二维的曲面。圆是一个一维几何图形(只有长度,没有宽度和深度),其半径越短,则弯曲程度越大。反之,如果半径增至无限长,圆就变成了直线,失去了弯曲性。同样地,一个球面随其半径的无限增长也会变成一个平面(若不计地面的粗糙,则在局域尺度上看地球表面是平的)。
弯曲因而是有精确的几何定义的。但当维数增加时,定义变得复杂多了,弯曲程度不能再像圆的情况那样用一个数来描述,而必须讲“曲率”。且看一个简单情况即圆柱面,这是一个二维曲面(图约,平行于其对称轴所量度的曲率为零,而在垂直方向上的曲率则与截出的那个圆相等。
尽管曲率有多重性,仍然可以定义出一个固有曲率。在二维面上的每一个点都可以量出两个相互垂直方向上的弯曲半径,二者乘积的倒数就是曲面的固有曲率。如果两个弯曲半径是在曲面的同一侧,固有曲率就是正的;如果是在两侧,那就是负的。圆柱面的固有曲率为零,事实上它可以被切开平摊在桌面上而不会被扯破,而对一个球面就不可能这样做。
球面、圆柱面及其他任意二维曲面都“包理”在三维欧几里德空间里。这种来自现实生活的具体形象使我们觉得可以区分“内部”和“外部”,并且常说是一个面在空间里弯曲。但是,在纯粹的几何学里,一个二维曲面的性质可以不需要关于包含空间的任何知识而完全确定,更高维的情况也是如此。我们可以描绘四维宇宙的弯曲几何,不需要离开这个宇宙,也不需要参照什么假想的更大空间,且看这是如何做到的。
弯曲空间的数学理论是在19世纪,主要由本哈·黎曼(Bernhard Riemann)发展出来的。即使是最简单的情况,弯曲几何的特性也是欧几里德几何完全没有的。再次考虑一个球面。这是一个二维空间,曲率为正值且均匀(各点都一样),因为两个曲率半径都等于球面的半径。连接球面上两个分离点的最短路线是一个大圆的一段弧,即以球心为中心画在球面上的一个圆的一部分。大圆之于球面正如直线之于平面,二者都是测地线,就是最短长度的曲线。一架不停顿地由巴黎飞往东京的飞机,最省时间的路线是先朝北飞,经过西伯利亚,再朝南飞,这才是最短程路线。由于所有大圆都是同心的,其中任何两个都相交于两点(例如,子午线相交于两极),换句话说,在球面上没有平行的“直线”。
已可看出欧几里德几何是被无情地践踏了。熟知的欧氏几何定律只能应用于没有任何弯曲的平坦空间,一旦有任何弯曲,这些定律就被完全推翻了。球面最明显的几何性质是:与平面上直线的无限延伸不同,如果谁沿着球面上的直线(即沿着大圆)运动,他将总是从相反方向上回到出发点。因此,球面是有限的,或者说封闭的,尽管它没有终极,没有边界(大圆是没有终端的)。球面正是具有任何维数的有限空间的理想原型(由于自转、地形及潮汐等因素,地球表面不是精确的球面,但它同样具有上述性质)。
现在来考查一下负曲率空间的情况。为简单起见,限于二维,典型的例子是双曲面,形如马鞍。如果也沿着这个面上的一条直线运动,一般说来不会再返回出发点,而是无限地远离。像平面一样,双曲面也是开放面,但仅此而已。作为一个曲面,双曲面根本不再是欧几里德型的。大多数曲面并不像球面或双曲面那样具有处处都为正或为负的曲率,而是曲率值逐点变化,正负号在面上不同区域也会改变。
希望可以帮助你哟!
热心网友
时间:2024-11-04 03:23
27为什么爱因斯坦说时空是弯曲的?看后才恍然大悟
热心网友
时间:2024-11-04 03:24
这个简单地从狭义相对论出发就能很好地解释,因为我们周围没有相对于我们运动速度快得足矣和光速比较的速度,所以狭义相对论的时间膨胀、尺缩效应就显得很微弱
热心网友
时间:2024-11-04 03:24
感觉和现实是有差别的,就象古代人们也以为天是圆的地是方的一样,感觉不到时空的弯曲也很正常,当然爱因斯坦也是人,他的理论也是人的一种感觉,也许时空是方的,而人的感觉才是圆的呢!呵呵