发布网友 发布时间:2022-05-07 13:50
共1个回答
热心网友 时间:2023-11-03 22:43
因为:f′(x)=?2 1+4x2 =?2∞ n=0 (?1)n4nx2n,x∈(?1 2 ,1 2 ),而f(0)=π 4 ,所以: f(x)=f(0)+∫x 0 f′(t)dt=π 4 ?2∫x 0 [∞ n=0 (?1)n4nt2n]dt=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ),由于级数∞ n=0 (?1)n 2n+1 收敛,函数f(x)在x=1 2 处连续,所以:f(x)=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ],令x=1 2 ,得:f(1 2 )=π 4 ?2∞ n=0 [(?1)4n 2n+1 ?1 22n+1 ]=π 4 ?∞ n=0 (?1)n 2n+1 ,再由:f(1 2 )=0,得:∞ n=0 (?1)n 2n+1 =π 4 ?f(1 2 )=π 4 .热心网友 时间:2023-11-03 22:43
因为:f′(x)=?2 1+4x2 =?2∞ n=0 (?1)n4nx2n,x∈(?1 2 ,1 2 ),而f(0)=π 4 ,所以: f(x)=f(0)+∫x 0 f′(t)dt=π 4 ?2∫x 0 [∞ n=0 (?1)n4nt2n]dt=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ),由于级数∞ n=0 (?1)n 2n+1 收敛,函数f(x)在x=1 2 处连续,所以:f(x)=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ],令x=1 2 ,得:f(1 2 )=π 4 ?2∞ n=0 [(?1)4n 2n+1 ?1 22n+1 ]=π 4 ?∞ n=0 (?1)n 2n+1 ,再由:f(1 2 )=0,得:∞ n=0 (?1)n 2n+1 =π 4 ?f(1 2 )=π 4 .热心网友 时间:2023-11-03 22:43
因为:f′(x)=?2 1+4x2 =?2∞ n=0 (?1)n4nx2n,x∈(?1 2 ,1 2 ),而f(0)=π 4 ,所以: f(x)=f(0)+∫x 0 f′(t)dt=π 4 ?2∫x 0 [∞ n=0 (?1)n4nt2n]dt=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ),由于级数∞ n=0 (?1)n 2n+1 收敛,函数f(x)在x=1 2 处连续,所以:f(x)=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ],令x=1 2 ,得:f(1 2 )=π 4 ?2∞ n=0 [(?1)4n 2n+1 ?1 22n+1 ]=π 4 ?∞ n=0 (?1)n 2n+1 ,再由:f(1 2 )=0,得:∞ n=0 (?1)n 2n+1 =π 4 ?f(1 2 )=π 4 .热心网友 时间:2023-11-03 22:43
因为:f′(x)=?2 1+4x2 =?2∞ n=0 (?1)n4nx2n,x∈(?1 2 ,1 2 ),而f(0)=π 4 ,所以: f(x)=f(0)+∫x 0 f′(t)dt=π 4 ?2∫x 0 [∞ n=0 (?1)n4nt2n]dt=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ),由于级数∞ n=0 (?1)n 2n+1 收敛,函数f(x)在x=1 2 处连续,所以:f(x)=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ],令x=1 2 ,得:f(1 2 )=π 4 ?2∞ n=0 [(?1)4n 2n+1 ?1 22n+1 ]=π 4 ?∞ n=0 (?1)n 2n+1 ,再由:f(1 2 )=0,得:∞ n=0 (?1)n 2n+1 =π 4 ?f(1 2 )=π 4 .热心网友 时间:2023-11-03 22:43
因为:f′(x)=?2 1+4x2 =?2∞ n=0 (?1)n4nx2n,x∈(?1 2 ,1 2 ),而f(0)=π 4 ,所以: f(x)=f(0)+∫x 0 f′(t)dt=π 4 ?2∫x 0 [∞ n=0 (?1)n4nt2n]dt=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ),由于级数∞ n=0 (?1)n 2n+1 收敛,函数f(x)在x=1 2 处连续,所以:f(x)=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ],令x=1 2 ,得:f(1 2 )=π 4 ?2∞ n=0 [(?1)4n 2n+1 ?1 22n+1 ]=π 4 ?∞ n=0 (?1)n 2n+1 ,再由:f(1 2 )=0,得:∞ n=0 (?1)n 2n+1 =π 4 ?f(1 2 )=π 4 .热心网友 时间:2023-11-03 22:43
因为:f′(x)=?2 1+4x2 =?2∞ n=0 (?1)n4nx2n,x∈(?1 2 ,1 2 ),而f(0)=π 4 ,所以: f(x)=f(0)+∫x 0 f′(t)dt=π 4 ?2∫x 0 [∞ n=0 (?1)n4nt2n]dt=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ),由于级数∞ n=0 (?1)n 2n+1 收敛,函数f(x)在x=1 2 处连续,所以:f(x)=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ],令x=1 2 ,得:f(1 2 )=π 4 ?2∞ n=0 [(?1)4n 2n+1 ?1 22n+1 ]=π 4 ?∞ n=0 (?1)n 2n+1 ,再由:f(1 2 )=0,得:∞ n=0 (?1)n 2n+1 =π 4 ?f(1 2 )=π 4 .热心网友 时间:2023-11-03 22:43
因为:f′(x)=?2 1+4x2 =?2∞ n=0 (?1)n4nx2n,x∈(?1 2 ,1 2 ),而f(0)=π 4 ,所以: f(x)=f(0)+∫x 0 f′(t)dt=π 4 ?2∫x 0 [∞ n=0 (?1)n4nt2n]dt=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ),由于级数∞ n=0 (?1)n 2n+1 收敛,函数f(x)在x=1 2 处连续,所以:f(x)=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ],令x=1 2 ,得:f(1 2 )=π 4 ?2∞ n=0 [(?1)4n 2n+1 ?1 22n+1 ]=π 4 ?∞ n=0 (?1)n 2n+1 ,再由:f(1 2 )=0,得:∞ n=0 (?1)n 2n+1 =π 4 ?f(1 2 )=π 4 .热心网友 时间:2023-11-03 22:43
因为:f′(x)=?2 1+4x2 =?2∞ n=0 (?1)n4nx2n,x∈(?1 2 ,1 2 ),而f(0)=π 4 ,所以: f(x)=f(0)+∫x 0 f′(t)dt=π 4 ?2∫x 0 [∞ n=0 (?1)n4nt2n]dt=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ),由于级数∞ n=0 (?1)n 2n+1 收敛,函数f(x)在x=1 2 处连续,所以:f(x)=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ],令x=1 2 ,得:f(1 2 )=π 4 ?2∞ n=0 [(?1)4n 2n+1 ?1 22n+1 ]=π 4 ?∞ n=0 (?1)n 2n+1 ,再由:f(1 2 )=0,得:∞ n=0 (?1)n 2n+1 =π 4 ?f(1 2 )=π 4 .热心网友 时间:2023-11-03 22:43
因为:f′(x)=?2 1+4x2 =?2∞ n=0 (?1)n4nx2n,x∈(?1 2 ,1 2 ),而f(0)=π 4 ,所以: f(x)=f(0)+∫x 0 f′(t)dt=π 4 ?2∫x 0 [∞ n=0 (?1)n4nt2n]dt=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ),由于级数∞ n=0 (?1)n 2n+1 收敛,函数f(x)在x=1 2 处连续,所以:f(x)=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ],令x=1 2 ,得:f(1 2 )=π 4 ?2∞ n=0 [(?1)4n 2n+1 ?1 22n+1 ]=π 4 ?∞ n=0 (?1)n 2n+1 ,再由:f(1 2 )=0,得:∞ n=0 (?1)n 2n+1 =π 4 ?f(1 2 )=π 4 .热心网友 时间:2023-11-03 22:43
因为:f′(x)=?2 1+4x2 =?2∞ n=0 (?1)n4nx2n,x∈(?1 2 ,1 2 ),而f(0)=π 4 ,所以: f(x)=f(0)+∫x 0 f′(t)dt=π 4 ?2∫x 0 [∞ n=0 (?1)n4nt2n]dt=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ),由于级数∞ n=0 (?1)n 2n+1 收敛,函数f(x)在x=1 2 处连续,所以:f(x)=π 4 ?2∞ n=0 (?1)n4n 2n+1 x2n+1,x∈(?1 2 ,1 2 ],令x=1 2 ,得:f(1 2 )=π 4 ?2∞ n=0 [(?1)4n 2n+1 ?1 22n+1 ]=π 4 ?∞ n=0 (?1)n 2n+1 ,再由:f(1 2 )=0,得:∞ n=0 (?1)n 2n+1 =π 4 ?f(1 2 )=π 4 .