设函数f(x)=ax2+bx+1(a,b∈R),(1)若f(-1)=0且对任意实数x均有f(x)≥...
发布网友
发布时间:2024-10-17 15:19
我来回答
共1个回答
热心网友
时间:2024-10-21 12:39
(本题12分)
解:(1)∵f(-1)=0,∴b=a+1,
由f(x)≥0恒成立,知a>0,且△=b2-4a=(a+1)2-4a=(a-1)2≤0,
∴a=1.
∴f(x)=x2+2x+1.(3分)
(2)∵g(x)=f(x)-16x(x∈[m,10],其中常数m>0),区间D为g(x)的值域,
D的长度为23-2m,
∴g(x)=x2-14x+1,23-2m=g(x)max-g(x)min,(5分)
①当m∈[7,10)时,23-2m=g(10)-g(t)=-m2+16m,得:m=7或9.(7分)
②当m∈[4,7)时,23-2m=g(10)-g(7),得m=7(舍).(9分)
③当m∈(0,4)时,23-2m=g(m)-g(7),m2-12m+26=0,
解得:m=12+2102(舍)或m=12?2102=6-10.(11分)
综合得m=6-10,或m=7,或m=9.(12分)