(1)已知函数y=f(x)定义域为R,当x属于R时f(m+x)=f(m-x)恒成立。求证y=f...
发布网友
发布时间:1天前
我来回答
共1个回答
热心网友
时间:1天前
(1)f(m+x)=f(m-x),令m+x=t,
则上式可化为:f(t)=f(2m-t)
在函数y=f(x)的图像上任取一点(a,b),则b=f(a),
又因f(a)=f(2m-a),所以b= f(2m-a)
点(a,b)关于直线x=m的对称点是(2m-a,b).
这说明对称点(2m-a,b)也在函数y=f(x)的图像上,
所以y=f(x)图像关于直线x=m对称.
(2)由(1)知:图像的对称轴是x=2,则有f(2+x)=f(2-x),
令x=2得:f(4)=f(0)
log2|4a-1|= log2|0-1|
|4a-1|=1,又a不为0,
所以4a-1=1,a=1/2.