如图,△ABC是直角三角形,∠CAB=90°,D是斜边BC上的中点,E、F分别是A...
发布网友
发布时间:2024-10-22 16:46
我来回答
共1个回答
热心网友
时间:2024-11-05 18:21
解答:(1)解:连接AD,
∵在Rt△ABC中,AB=AC,AD为BC边的中线,
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF,
在△AED与△CFD中,
∠EDA=∠CDFAD=CD∠EAD=∠C,
∴△AED≌△CFD(ASA).
∴AE=CF,
同理△AED≌△CFD,
∴AF=BE.
∵∠EAF=90°,
∴EF2=DE2+DF2,
∴BE2+CF2=EF2;
∵BE=12,CF=5,
∵EF=13,
∵△BDE≌△ADF,
∴DE=DF,∠BDE=∠ADF,
∵AD⊥BD,
∴∠ADB=90°.
∴∠EDF=∠ADE+∠ADF=∠BDE+∠ADE=∠ADB=90°,
∴在Rt△EDF中,由勾股定理得:ED2+DF2=132,
DE=DF=1322,
∴△DEF的面积S=12×DE×DF=12×1322×1322=1694;
(2)证明:连接AD,
∵在Rt△ABC中,AB=AC,AD为BC边的中线,
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF,
在△AED与△CFD中,
∠EDA=∠CDFAD=CD∠EAD=∠C,
∴△AED≌△CFD(ASA),
∴AE=CF,
同理△AED≌△CFD,
∴AF=BE.
∵∠EAF=90°,
∴EF2=DE2+DF2,
∴BE2+CF2=EF2.