发布网友 发布时间:2022-05-12 06:09
共2个回答
热心网友 时间:2023-07-28 18:42
首先我们就要探讨一下,当函数图像与x轴围成的面积部分出现在x轴下方,时是否也可以利用定积分求面积。我们用y=3-x^2,在[-3,1]上,与x轴围成的面积进行探究。
关于x轴下方的面积的探讨,我们先讨论这个区间里的定积分,再看它的值与面积之间的关系。
所以y=3-x^2,在[-3,1]上,与x轴围成的面积即x轴上方的积分减去x轴下方的积分。我们还有疑问为什么两个曲线在某个区间上围成的面积就是对该区间两函数差进行积分呢?我们以求y=3-x^2,与y=2x围成的面积为例。
求y=3-x^2,与y=2x围成的面积,首先求出两曲线的交点,确定定积分的区间;一定要是上面的曲线函数减去下面的,如果怕弄混,可以在求的时候加上绝对值。
根据上面的探究我们找个具体的题目来试着求一求,巩固一下知识并熟练掌握该知识点。求抛物线y^2=2x,与y=4-x围成的面积。
热心网友 时间:2023-07-28 18:43
函数图像围成的面积可以用积分来求解。