发布网友 发布时间:2022-04-22 04:33
共2个回答
热心网友 时间:2024-02-25 10:11
有偏估计(biased estimate)是指由样本值求得的估计值与待估参数的真值之间有系统误差,其期望值不是待估参数的真值。
无偏估计是用样本统计量来估计总体参数时的一种无偏推断。估计量的数学期望等于被估计参数的真实值,则称此估计量为被估计参数的无偏估计,即具有无偏性,是一种用于评价估计量优良性的准则。
假设A市有10000名小学六年级的学生,他们进行一次考试,成绩服从1~100的均匀分布。1号学生考1分,2号学生考1.01分......10000号学生考100分。
那么,他们的平均分为(1+1.01+1.02+...+100)/10000=50.5,这个值是总体期望,但实际上我们并不能知道这个值,只能通过样本估计。
可以给A市88所小学打电话,让学校老师随机选取一名学生成绩报上来,这样就可以得到88名学生的成绩,这88名学生就是我们第一个随机选取的样本,我们算出平均值,记作。
然后再重新给A市88所小学打电话,重新随机选取88名学生的成绩,这是第二个随机样本。算出样本2的平均值,记作。
然后重复n遍,获得n个样本均值,你会发现样本均值的分布符合正态分布。我们就可以用最大似然估计或距估计求得这个正态分布的期望。
而样本平均数的期望(在这里就是均值),极其接近总体的期望。我们称之为无偏估计,一次抽样计算的平均值就说是总体均值的做法就是有偏估计(biased estimator)
扩展资料
(1)无偏估计有时并不一定存在。
(2)可估参数的无偏估计往往不唯一。统计学中,将存在无偏估计的参数称为可估参数,可估参数的无偏估计往往不唯一,而且只要不唯一,则即有无穷多个。一个参数往往有不止一个无偏估计。
(3)无偏估计不一定是好估计。
参考资料来源:百度百科-有偏估计
参考资料来源:百度百科-无偏估计
热心网友 时间:2024-02-25 10:11
有偏估计、无偏估计和最大似然估计是统计学中常用的三种参数估计方法,它们之间的区别如下: