对称(包括中心对称和轴对称)的含义是什么?原函数和反函数的图形对称关系是关于Y=X对称?那么两个乘积等
发布网友
发布时间:2022-05-24 15:58
我来回答
共2个回答
热心网友
时间:2023-10-19 18:47
1. 轴对称:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫做轴对称图形,这条直线叫做对称轴
2. 中心对称:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点为中心对称点
3. 原函数和他的反函数关于y=x轴对称
4. 不一定,比如指数函数y=e^x和y=e^(-x)相乘也等于1,但此二函数关于y轴对称
5. 两个函数关于y=x对称说明他们互为反函数,互为反函数的两个函数相乘等于1,相乘等于1的两个函数不一定互为反函数
6. 函数关于y=0对称说明这个函数是偶函数
7. 一阶导数连续,说明函数一阶连续可导(不是废话,数学表示为C1(1是上标)),只能说明函数一定连续且存在连续的一阶导数,无法判定二阶导数是否存在,更不能说明函数是光滑的(光滑意味函数n阶连续可导)
参考资料:百度百科:轴对称,中心对称
热心网友
时间:2023-10-19 18:47
1. 轴对称:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫做轴对称图形,这条直线叫做对称轴
2. 中心对称:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点为中心对称点
3. 原函数和他的反函数关于y=x轴对称
4. 不一定,比如指数函数y=e^x和y=e^(-x)相乘也等于1,但此二函数关于y轴对称
5. 两个函数关于y=x对称说明他们互为反函数,互为反函数的两个函数相乘等于1,相乘等于1的两个函数不一定互为反函数
6. 函数关于y=0对称说明这个函数是偶函数
7. 一阶导数连续,说明函数一阶连续可导(不是废话,数学表示为C1(1是上标)),只能说明函数一定连续且存在连续的一阶导数,无法判定二阶导数是否存在,更不能说明函数是光滑的(光滑意味函数n阶连续可导) 给点赞同啊