函数在闭区间连续开区间可导,能说明其导数连续吗
发布网友
发布时间:2022-05-24 17:35
我来回答
共1个回答
热心网友
时间:2023-10-23 10:34
这是多项式函数,多项式函数在R上都是连续可导的,你要证明起来很快,但这是常识。你要是能够证明在任何一点都连续且可导,那根据区间连续可导的定义,在整个区间上就连续可导了啊,怎么会觉得不清楚呢。
所有初等函数:多项式、指数、对数、三角和反三角都是在各自的定义域上连续和可导的,它们的复合函数一般也是连续且可导的,除非定义某些没意义的点为其他什么数值,人为造成不连续或不可导,比如定义
f(x) = sin(x)/x 在原点数值为2,就原点不连续了,但是在非原点的地方,由于是初等函数的复合函数,连续和可导是没任何问题的。
证明在区间内可导,只需要证明在区间内每个点可导即可。如果是对闭区间的话,对左端点,证明右导数存在,对右端点,证明左导数存在即可。
希望能解决您的问题。追问谢谢