问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

三角函数是怎么得出来的

发布网友 发布时间:2022-05-25 17:00

我来回答

1个回答

热心网友 时间:2023-11-22 16:42

常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα

诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于k·π/2±α(k∈Z)的个三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
上述记忆口诀,一全正,二正弦,三正切,四余弦

其他三角函数知识:

同角三角函数基本关系
⒈同角三角函数的基本关系式
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法
六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式
⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ

倍角公式
⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)

半角公式
⒋半角的正弦、余弦和正切公式(降幂扩角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα

万能公式
⒌万能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
万能公式推导
附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式
⒍三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)

三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角 减 3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

和差化积公式
⒎三角函数的和差化积公式
α+β α-β
sinα+sinβ=2sin—----·cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----·sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----·cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----·sin—-----
2 2
积化和差公式
⒏三角函数的积化和差公式
sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)]

和差化积公式推导
附推导:
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
请问哪位大哥“谨谢不敏”是什么意思? 小女子尽谢不敏什么意思 谨谢不敏是什么意思? 敬谢不敏是是什么意思? 谢不敏的意思是什么 谢不敏词语解释 什么叫“谢不敏”? 6岁儿童晚上睡眠不好怎么办 六岁孩子精神异常怎么办 小程序开发需要什么技术 没有技术如何开发小程序 上海的朱家角镇和泰晤士小镇哪个更好玩? 朱家角有什么好玩的 朱家角古镇有什么玩 朱家角镇有没有好玩的地方 朱家角有什么好玩的地方? 朱家角有什么好玩的?有什么好吃的? 夏天大地披上了什么衣裳 玻璃胶怎么弄掉 一场大雪后,大地披上了银装,这时你会发现周围特别宁静,这是为什么 春天,大地披上绿装,真美 手机恢复出厂设置后,应用商店,快手都打不开,清楚历史记录来回复 夜色,月光给大地披上了一层白色的薄纱是比喻句吗 大地披上银装这句歌词是哪首歌 我手机让我恢复出厂设置了,然后上快手什么的不让录视频了,说手机版 玻璃胶怎么去除快速拆除固化玻璃胶窍门太实用了 春雨给大地披上了美丽的衣裳表达了什么 春天来了,大地披上了新衣.采用了什么修辞手法 阿巴町儿童智能手表妈妈安装好了爸爸安装还要注册吗? 夜晚,月亮给大地披上了一层银色的薄沙是比喻句吗 我在使用matlab调用C#生成的dll,但为什么matlab不能识别NET.addAssembly函数?我已经装了.NET Framework 这种三角函数的公式是怎么推出来的?比如cos(arctanx)=1/ (1+x^2)^1/2 任意三角形的三角函数是怎么推出来的 三角函数是怎麽推出来的``` MBA,SMBA,EMBA,它们是什么意思?有什么区别?是不是都是双证的啊? 联通手机卡丢了不是本人身份证办的怎么补办回来? 高中三角函数问题:基础知识推导??? 这三角函数怎么推出来的?求过程! 联通卡丢了,不是本人带上身份证可以去补办吗 中小学教师资格考试一直是待审核怎么回事呢 55岁以上的人6百万医疗保险每年交多少钱保费? 华南理工大学的信息管理与信息系统专业怎样? 信息管理与信息系统专业的学生如果想考研的话有没有本专业的的研究生呢? 广东金融学院10届新生专业是信息管理与信息系统(金融信息管理) 造价员考试免考条件 请问大家,专插本是考深圳大学好,还是广州大学好?女生读工商管理好,还是信息管理与信息系统好呢? 信息管理与信息系统专业应该学那些软件,哪里可以下载,谢谢 理科分数568分考广东金融学院的信用管理专业容易录取,还是信息管理与信息系统容易录取 我是学信息管理与信息系统的,考研选什么专业什么学校好 我是信息管理与信息系统专业的学生,请问我可以报考国家公务员哪些职位?大神们帮帮忙 信息系统与信息管理<医药卫生方面>的专业出来之后做什么?好找工作吗?如题 谢谢了